
6 Dynamical systems and embedded cognition

Randall D. Beer

6.1 Introduction

The conceptual frameworks that we bring to our study of cognition can have

a tremendous impact on the nature of that study. They provide a set of filters

through which we view the world, influencing our choice of phenomena to

study, the language in which we describe these phenomena, the questions

we ask about them, and our interpretations of the answers we receive. For

much of the last fifty years, thinking about thinking has been dominated

by the computational framework, the idea that systems are intelligent to the

extent that they can encode knowledge in symbolic representations which are

then algorithmically manipulated so as to produce solutions to the problems

that these systems encounter (see Chapter 4 of this volume). More recently, the

connectionist framework forced an important refinement of the computational

framework, in which representation and computation could be distributed

across a large number of loosely neuron-like units (see Chapter 5).

Beginning around the mid 1980s, just as the popularity of connectionism

was rising, another conceptual framework appeared (or, as in the case of con-

nectionism, reappeared) on the scene. This framework, which, for want of a

catchier label, I will call the situated, embodied, dynamical (SED) framework,

focuses on concrete action and emphasizes the way in which an agent’s behav-

ior arises from the dynamical interaction between its brain, its body, and its

environment. In this chapter, I will attempt to trace some of the history of the

individual intellectual threads of situated activity, embodiment, and dynamics

that underlie the SED approach. I will particularly focus on the years 1985–

1995. Although there were important precursors to the SED approach (some

of which I will briefly mention), and work in this area has grown rapidly in

recent years, many of the pivotal ideas were first given their modern form

during this ten-year period.

6.2 Situated activity

The first intellectual thread making up the SED approach is situated activ-

ity. Roughly speaking, situated activity stresses three ideas that have been

traditionally neglected in AI and cognitive science.
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129 Dynamical systems and embedded cognition

S1 Concrete action. Actually taking action in the world is more fundamental

than the abstract descriptions that we sometimes make of it. While con-

scious deliberation clearly has its role, the ultimate job of an intelligent

agent is to do something, to take some concrete action with consequences

beyond its own skull.

S2 Situatedness. An agent’s immediate environment plays a central role in its

behavior. This environment is not only a rich source of constraints and

opportunities for the agent, but also a context that gives meaning to the

agent’s actions.

S3 Interactionism. An agent’s relationship with its environment is one of

ongoing interaction. The environment does not serve merely as a source

of isolated problems for the agent to solve, but rather a partner with which

the agent is fully engaged in moment-to-moment improvisation.

The philosophical roots of situated activity can be traced to phenomenology,

especially the work of Martin Heidegger (1927/1962), which was brought into

AI and cognitive science primarily through the criticisms of Hubert Dreyfus

(1972/1992). One of Heidegger’s key insights was the distinction he drew

between objects being zuhanden (“ready-to-hand”) and vorhanden (“present-

at-hand”). In our normal daily experience, we usually encounter things as

resources for immediate action in the service of achieving our goals. For

example, to someone in the act of hammering a nail, the hammer in some

sense ceases to exist. Rather, like any tool, it becomes merely an extension

of the arm (i.e., it is ready-to-hand). It is only when we explicitly adopt an

intellectual attitude toward the hammer (e.g., because the handle has broken

and the hammer is suddenly unable to perform its normal function), that the

hammer emerges from the unarticulated background of things as a distinct

object characterized by its own set of properties (i.e., it becomes present-at-

hand). A number of authors have carefully articulated the challenges that

phenomenological ideas pose to the cognitivist worldview that has dominated

thinking in AI and cognitive science, which not only conceives of cognition as

the rule-governed manipulation of symbolic representations, but also makes

fundamental distinctions between the physical and the mental, between the

body and the mind and between the environment and the agent (Dreyfus

1972/1992; Winograd and Flores 1986; Varela, Thompson, and Rosch 1991;

Clark 1997; Wheeler 2005).

Another important precursor to situated activity was James Gibson’s Eco-

logical Psychology (Gibson 1979). Based on his studies of vision in World War

II pilots, Gibson emphasized the structure inherent in an organism’s environ-

ment and the importance of the organism/environment relation to a theory of

perception. For example, the way in which an animal’s visual field changes as

it moves through its environment carries a great deal of information about the

direction and speed of motion, distances to objects, orientations of surfaces,
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130 Randall D. Beer

and so on. Gibson’s views eventually encompassed a wide-ranging rejection

of cognitivism. However, for our purposes here, Gibson’s most important con-

tribution is his notion of affordances – the possibilities for action that an

environment presents to an agent. For example, Heidegger’s hammer affords

pounding nails due to the graspability of its handle and the shape and hard-

ness of its head. Furthermore, Gibson argued that, although affordances are

perceivable facts about the world, they are ecological in the sense that their

significance is relative to the capabilities of a particular organism. For exam-

ple, an opening that affords passability to a mouse does not necessarily afford

passability to a human being.

A third important influence on situated activity came from work in the

social sciences. For example, Lucy Suchman, an anthropologist studying man–

machine interaction, traced breakdowns in communication between a person

and a help system for a photocopy machine to mistaken assumptions made by

the designers of the system about the nature of action (Suchman 1987). She

rejected the traditional view in AI and cognitive science that action results

from the execution of a plan, and argued instead that action must be under-

stood as situated, in the sense that it is contingent upon the actual circum-

stances as they unfold. On this view, explicit plans are best interpreted as

resources for communicating about action rather than as mechanisms for

action. Based on his studies of the navigation team of a large naval vessel,

another anthropologist, Edwin Hutchins, similarly concluded that cognition

“in the wild” must often be understood as a culturally constituted activity

among a group of individuals depending heavily on the unfolding situation

in which it occurs (Hutchins 1995).

Within AI, situated ideas came to the fore in the mid 1980s. Earlier demon-

strations of how rich behavior could arise from simple mechanisms interacting

with complex environments include W. Grey Walter’s robotic “tortoises”

(Walter 1953) and Valentino Braitenburg’s simple “vehicles” (Braitenburg

1984). However, situated activity research within AI arose mainly as a reac-

tion against the traditional planning view of action, in which agents represent

the current situation and available actions, formulate a symbolic plan of

action, and then execute this plan. Philip Agre and David Chapman stressed

the inability of classical planning techniques to scale to complex, uncertain,

real-time environments and proposed instead that routine activity arises from

the interaction of simple internal machinery with the immediate situation

(Agre and Chapman 1987). Agre and Chapman demonstrated the utility of

this idea in a series of programs, the best-known of which was Pengi, an

agent that played the video arcade game Pengo in real time despite having

to deal with hundreds of often unpredictable objects. Stanley Rosenschein

and Leslie Kaelbling showed how a specification of an agent’s goals could be

“compiled away” into simple machinery such that, although it still made sense

for an external observer to talk about the agent’s knowledge and beliefs, these
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131 Dynamical systems and embedded cognition

states no longer played any direct role in the agent’s actions (Rosenschein

and Kaelbling 1986). Rodney Brooks’ influential work on autonomous robots

rejected the traditional sense-model-plan-act cycle, emphasizing that often

“the world is its own best model” (Brooks 1986, 1991a; see also Chapter 13 of

this volume). He developed a layered control system known as the subsump-

tion architecture, in which networks of simple machines interact with one

another and the immediate circumstances to produce behavior, and deployed

it on a variety of different robots. David Cliff (Cliff 1991) and I (Beer 1990)

demonstrated the significant potential for interaction between work on the

neural basis of animal behavior and situated agents, developing models of a

hoverfly and a cockroach, respectively.

Presumably, no one would deny that the environmental situation has an

important role to play in an agent’s behavior, but just how fundamental this

observation is remains controversial (Kirsch 1991; Vera and Simon 1993;

Hayes, Ford, and Agnew 1994; Clancey 1997; Anderson 2003). To some,

situated activity smacks of behaviorism, but this charge depends a great deal

on what exactly one means by “behaviorism.” It is certainly true that work

in situated activity exhibits a renewed emphasis on concrete behavior over

abstract reasoning. However, abstract reasoning is not rejected by situated

approaches, but rather relegated to a supporting role as an evolutionarily

recent elaboration of a more basic capacity for getting around in the world. It is

also true that much work in situated activity has tended to emphasize reactive

architectures, in which an agent’s actions are completely determined by its

sensations, and to either reject or at least significantly reconstrue the idea of

internal representations. Reactive architectures are strongly reminiscent of the

stimulus–response paradigm embraced by behaviorism, and have well-known

limitations when it comes to, for example, anticipatory behavior. However, as

we shall see later in this chapter, a commitment to purely reactive architectures

is unnecessary, and it is possible to articulate a role for internal state that is

both essential and interestingly different from the representational role that

such state plays in traditional AI and cognitive science.

Perhaps the most controversial idea that has emerged from research on

situated cognition in recent years is the notion of the extended mind (Clark

1997; Clark and Chalmers 1998). This idea is grounded in the observation that

not only does an agent’s environment play an essential role in its behavior, but

the agent itself can manipulate that role by actively organizing its environment

so as to increase its problem-solving ability. For example, we lay out the

ingredients for a recipe in the order in which they will be needed, and we use

maps to find our way through sprawling cities. Such scaffolding allows us

to offload significant parts of our cognitive processing into the environment.

Furthermore, through language, we can coordinate the activities of many

people so that they can collectively accomplish things that no individual

person may be able to, such as navigating a large naval vessel (Hutchins
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132 Randall D. Beer

1995). Extended mind advocates argue that if memory, problem solving, and

so on can be spread across many agents and artifacts, then cognition itself

must be understood as a distributed phenomenon that transcends the skull of

an individual agent, and properly belongs only to the larger system of agents

and artifacts of which that individual is a part. Indeed, even social insects are

known to collectively accomplish complex construction tasks such as nest-

building by modifying their environment in such a way as to appropriately

organize the flow of workers and material, a process referred to as stigmergy

(Turner 2000).

6.3 Embodiment

A second intellectual thread in the SED approach is embodiment. There are at

least three somewhat distinct ideas that have been advanced by advocates of

embodied cognitive science.

E1 Physical embodiment. The uniquely physical aspects of an agent’s body are

crucial to its behavior, including its material properties, the capabilities for

action provided by the layout and characteristics of its degrees of freedom

and effectors, the unique perspective provided by the particular layout

and characteristics of its sensors, and the modes of sensorimotor interac-

tion that the sensors and effectors collectively support. In some ways, this

aspect of embodiment is a special case of situatedness. Whereas situated-

ness includes any kind of interaction with the environment, embodiment

emphasizes those specifically physical interactions mediated by the body.

E2 Biological embodiment. Not only are the physical characteristics of bodies

important, but the specifically biological facts of an organism’s existence

must also be taken into account, including the relevant neuroscience,

physiology, development, and evolution.

E3 Conceptual embodiment. Even when engaged in pure ratiocination, our

most abstract concepts are still ultimately grounded in our bodily experi-

ences and body-oriented metaphors.

The philosophical roots of embodiment can also be traced to phenomenol-

ogy, especially the work of Maurice Merleau-Ponty (1962), who made bodily

involvement in the world central to his phenomenology of lived experience.

To take but one example, Merleau-Ponty’s argument that how we perceive an

object is shaped by the kinds of interactions with it that our body allows can be

seen as an early precursor to Gibson’s (1979) notion of affordances. Merleau-

Ponty’s thought also played a major role in Dreyfus’ critique of computational

theories of mind (Dreyfus 1972/1992).

Within AI and cognitive science, the importance of physical embodiment

was first emphasized by Brooks (1991b). Brooks argued that AI needed to

move beyond the abstract microworlds that had been its primary concern and
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133 Dynamical systems and embedded cognition

begin to address the sorts of problems encountered by real robots moving

around in real environments. In this way, Brooks suggested, the extent to

which most classical AI techniques are simply untenable in realistic situations

would become clear. In its milder form, the argument of physical embodiment

is simply that the material properties of the body and environment play a

key role in its behavior and, by building robots, we get this physics “for

free” rather than having to painstakingly model it. In its most radical form,

the claim is that only physically instantiated AI systems will exhibit truly

intelligent behavior. Coupled with the contemporaneous trends in situated

cognition reviewed in the previous section, Brooks’ arguments unleashed an

explosion of work in behavior-based robotics (Arkin 1998), active perception

(Ballard 1991; Churchland, Ramachandran, and Sejnowski 1994; Noë 2004),

embodied cognitive science (Pfeifer and Scheier 1999), autonomous agents

(Maes 1990), some aspects of artificial life (Langton 1989), and the philosophy

of mind (Clark 1997).

Biological embodiment takes the arguments of physical embodiment one

step further. Not only are the physical characteristics of bodies important, but

so are the biological facts of an organism’s existence. The conditions necessary

to maintain our living state fundamentally constrain our behavioral and cog-

nitive capacities. In addition, the specific properties of bone, muscle, and skin,

the specific characteristics of biological sensors, and the ways these sensory

and motor capabilities are knitted together in human bodies fundamentally

define our own particular mode of embodiment. Furthermore, the fact that we

have gone through the particular evolutionary and developmental history that

we have may also have important consequences for our behavioral and cog-

nitive architecture. For example, Esther Thelen and Linda Smith have argued

for the importance of understanding the sensorimotor origins of cognition in

development, both in studies of the development of walking in infants (Thelen

and Smith 1994) and, more recently, in studies of Jean Piaget’s classic A-not-B

error, in which an infant repeatedly shown an object being hidden under box

A will still reach for A even after being shown the object being hidden under

a second box B (Thelen et al. 2001). A similar argument can be made for the

emergence in evolution of uniquely human cognitive capacities from simpler

precursors. Finally, there has been a very strong push toward incorporating

more neurobiological realism into embodied agents (Arbib 1987; Beer 1990;

Edelman et al. 1992). Conversely, neuroscience has begun to take seriously

the role of the body and of neuromechanical interactions in the production of

behavior (Chiel and Beer 1997).

Thus, the conventional claim of biological embodiment is that the biolog-

ical features of organisms matter to their behavior and cognition. A more

radical claim that is sometimes associated with biological embodiment is that

the living state itself is fundamental to cognition (Maturana and Varela 1980;

Varela et al. 1991; Di Paolo 2005). The idea here is generally not that the
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134 Randall D. Beer

material or biochemistry of life is essential, but rather that the organization

of living systems is indispensable to their cognitive capabilities. The relevant

notion of living organization is generally derived from Humberto Maturana

and Francisco Varela’s concept of autopoiesis (roughly, a self-producing net-

work of components and processes, i.e., a kind of organizational homeostasis)

(Maturana and Varela 1980).

Finally, conceptual embodiment concerns the way in which even abstract

concepts are often grounded in bodily experience and metaphor. For example,

Stevan Harnad defined the symbol grounding problem as the problem of how

words, and ultimately mental states, get their meaning (Harnad 1990), and

he proposed that a way to address this problem is to ground them in senso-

rimotor signals. Furthermore, George Lakoff and Mark Johnson have argued

that the structure of our reason is grounded in the details of our embodiment,

and that many abstract concepts are metaphors derived from sensorimotor

domains (Lakoff and Johnson 1999). For example, we speak of understanding

something as “grasping” it and we speak of failing to understand something

as a failure to “grasp” it or it “going over our heads.” Likewise, bad things

“stink” and the “pieces” of a theory “fit” together.

6.4 Dynamics

The final intellectual thread constituting the SED approach is dynamics, within

which we must distinguish at least three ideas.

D1 Dynamical systems theory (DST). A mathematical theory that can be

applied to any system characterized by a state that changes over time

in some systematic way.

D2 The dynamical framework. A collection of concepts, intuitions, and

metaphors involved in taking a dynamical perspective on some system

of interest.

D3 The dynamical hypothesis. A specific hypothesis, put forward by Timothy

van Gelder (1998), for how DST and the dynamical framework could be

combined into a rigorous counterproposal to the traditional computational

hypothesis in AI and cognitive science.

A dynamical system is a mathematical abstraction that unambiguously

describes how the state of some system evolves over time (Abraham and Shaw

1992; Strogatz 1994). It consists of a state space S, an ordered time set T,

and an evolution operator φ that transforms a state at one time to another

state at some other time. A dynamical system whose evolution depends on

its internal state only is called autonomous, while one whose evolution also

depends on external inputs is called nonautonomous. S can be numerical or

symbolic, continuous or discrete (or a hybrid of the two), and of any topology

and dimension (including infinite dimensional). T is typically either the set
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135 Dynamical systems and embedded cognition

of integers or the set of real numbers. The evolution operator may be given

explicitly or defined implicitly, and it may be deterministic or stochastic.

The most common examples of dynamical systems are sets of ordinary dif-

ferential equations and iterated maps, but many other kinds of mathematical

systems can also be fruitfully described and analyzed in dynamical terms. For

any mathematical system that can be put into this form, DST offers a wide

variety of tools for analyzing its temporal behavior, many of which were first

developed by the French mathematician Henri Poincaré in support of his work

in celestial mechanics. These tools include the identification of invariant sets

(sets of points in the state space that the evolution operator does not change,

i.e., fixed points and limit cycles), the characterization of their local behav-

ior (how they respond to perturbations, i.e., their stability) and their global

behavior (how they are interconnected, i.e., their saddle manifolds), and their

dependence on parameters (how they change as parameters are changed, i.e.,

their bifurcations). It is important to reiterate that, just like the formal the-

ory of computation, DST is a body of mathematics, and not itself a scientific

theory of the natural world.

Despite the fact that DST is not itself a scientific theory, taking a dynamical

perspective on some natural phenomenon brings with it a set of concepts,

intuitions, and metaphors – a certain worldview – that influences the questions

we ask, the analyses we perform, and how we interpret the results (van Gelder

1995). When one approaches some system from a computational perspective,

one is concerned with what function the system is trying to compute, in

what format the problem input is specified, in what output format the answer

is required, how the relevant features of the problem are to be represented,

by what algorithms these representations are to be transformed, and how

the performance of these algorithms scales with problem size. In contrast,

when one approaches some system from a dynamical perspective, one seeks

to identify a minimal set of state variables whose evolution can account

for the observed behavior, the dynamical laws by which the values of these

variables evolve in time, the overall spatiotemporal structure of their possible

evolution, and the sensitivity of this structure to variations in inputs, states,

and parameters.

The dynamical perspective has been found to be a fruitful one in many

areas of cognitive science (Port and van Gelder 1995; Beer 2000). A dynam-

ical perspective on brain and behavior was first explicitly articulated by W.

Ross Ashby (Ashby 1960). Within neural networks, Stephen Grossberg has

long emphasized the importance of dynamical ideas (Grossberg 1969). Indeed,

DST is now an essential tool in computational neuroscience (Izhikevich 2007)

for analyzing, not just individual nerve cells or small circuits, but also entire

brain systems (Skarda and Freeman 1987). Dynamical ideas were first brought

into ecological psychology by Peter Kugler (Kugler, Kelso, and Turvey 1980;

for reviews see Turvey 1990 and Warren 2006). Scott Kelso and colleagues
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136 Randall D. Beer

have pursued a dynamical perspective on brain and behavior for many years,

especially emphasizing the role of self-organization in the creation of behav-

ioral patterns and the transitions between them (Kelso 1995). Thelen and

Smith have argued for a dynamical approach to cognitive development, in

which processes and change are studied using the same tools across a range

of timescales (Thelen and Smith 1994). Jeffrey Elman emphasized the fun-

damentally temporal character of language understanding, with preceding

words strongly influencing the interpretation of subsequent ones, and has

developed a dynamical approach to language (Elman 1995). Finally, I argued

that dynamical systems theory provides the appropriate theoretical language

and tools for analyzing the kinds of autonomous agents that were being devel-

oped in AI and robotics (Beer 1995a), and Timothy Smithers (1995) and Gregor

Schöner (Schöner, Dose, and Engels 1995) advocated a dynamical approach

to the design of autonomous robots.

A specific formulation that has received a great deal of attention is the

dynamical hypothesis put forward by van Gelder (van Gelder 1995; 1998). Van

Gelder defines a dynamical system as a quantitative system, that is, a system

whose state space, time set, and evolution law involve numerical quantities.

As we saw above, this is a significant restriction of the mathematical definition

of a dynamical system. His dynamical hypothesis then has two components:

(1) the nature hypothesis and (2) the knowledge hypothesis. The claim of the

nature hypothesis is ontological: Cognitive systems are dynamical systems.

In contrast, the knowledge hypothesis claims only that cognitive systems

are best understood using the tools of dynamical systems theory. Given that

even many advocates of the dynamical approach do not fully support van

Gelder’s dynamical hypothesis, it is unfortunate that most critical discussion

of the dynamical approach to cognition has focused on van Gelder’s specific

formulation (Eliasmith 1997; Grush 1997; Bechtel 1998; Van Leeuwen 2005).

Nevertheless, it is an historically important attempt to formulate a dynamical

alternative to the computational hypothesis.

6.5 Toward an integrated perspective

To this point, I have treated situatedness, embodiment, and dynamics as rel-

atively separate intellectual threads. I did this both because the historical

development of these ideas occurred somewhat independently and because

they are logically independent – that is, people can and do hold each of them

individually without necessarily also subscribing to the others. However, it

will not have escaped the careful reader’s attention that there is a great deal of

potential overlap and synergism between them. The goal of this section is to

articulate an integrated theoretical framework that combines the insights from

situatedness, embodiment, and dynamics. In contrast to previous sections, I

will also adopt a more personal viewpoint in this section, describing my own
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Body

Environment

Nervous

system

Figure 6.1 An agent and its environment are coupled dynamical systems. The agent

in turn is composed of coupled nervous system and body dynamical systems.

particular integrative view (Beer 1995a; 1995b; 2003) rather than attempting

a general survey of all such views.

The basic situated, embodied, dynamical (SED) framework is quite simple

and is illustrated in Figure 6.1. It consists of the following three postulates:

SED1 Brains, bodies, and environments are dynamical systems (cf. S2, E1, E2,

D1, D2). Nervous systems, bodies, and environments are all conceptu-

alized as dynamical systems, by which I mean only that we assume that

each can be characterized by a set of states whose temporal evolution

is governed by dynamical laws.

SED2 Brain, body, and environment dynamics are coupled (cf. S1, S3, D1, D2).

Nervous systems are embodied in bodies, which are in turn situated

within environments, leading to dense interaction between these three

component systems. The coupled brain–body subsystem will be termed

the “agent.” Coupling that flows from the environment to the agent will

be termed “sensory,” and coupling that flows in the opposite direction

will be termed “motor.” The “behavior” of an agent will be defined as

its trajectory of motor actions.

SED3 The agent is subject to viability constraints (cf. E2). There are condi-

tions on the dynamics of the agent that determine its viability. If these

viability constraints are violated, then the agent ceases to exist as an

independent entity and can no longer engage in behavioral interactions

with its environment. (We will not consider this postulate further here;

for discussion of its role in the SED framework, see Beer 2004.)

The a priori theoretical commitments of this framework are quite mini-

mal. Indeed, it is hard to imagine a theoretical framework that makes fewer
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138 Randall D. Beer

commitments than this. What could possibly follow from such a small set

of claims? In fact, quite a number of nontrivial consequences follow almost

immediately if we take these three postulates seriously.

Perhaps the most important conclusion is this: Strictly speaking, behavior is

a property of the entire coupled brain–body–environment system, and cannot

in general be properly attributed to any one subsystem in isolation from the

others. We have defined behavior to be only the trajectory of an agent’s

motor actions. However, because the brain, body, and environment dynamics

are coupled, they form a single larger autonomous dynamical system with its

own trajectories of temporal evolution. The trajectories of an agent’s motor

actions are merely projections of the full trajectories of the complete brain–

body–environment system, and it is these full trajectories that are the proper

objects of study within the SED framework.

Even though behavior is a property of the entire coupled system, it is

still meaningful to ask about the relative contributions of brain, body, and

environment to some particular feature of a behavioral trajectory. In order to

do so, we must open the coupled brain–body–environment system by cutting

one or more of the coupling pathways in order to isolate the component we

wish to study. This component then becomes a nonautonomous dynamical

system, and our analysis involves examining how its own intrinsic dynamics

interacts with the inputs it receives from the other components of the coupled

system in the production of the behavioral feature of interest. This has many

interesting consequences for the way we conceive of traditional behavioral

and cognitive phenomena.

For example, perception is generally viewed as a means by which an agent

extracts information about its surroundings from the raw sensory signals

it receives and internally represents the structure of its environment. But a

dynamical system follows a trajectory specified by its own internal state

and dynamical laws. Sensory inputs cannot in general place a nonautonomous

dynamical system into some state uniquely characteristic of a given external

object. Rather, the most that they can do is bias the intrinsic tendencies of the

agent dynamics by selecting some particular trajectory from the set of possible

trajectories that the agent’s dynamical laws allow from its current state. This

suggests a more behavior-oriented view of perception that is reminiscent of

Gibson (1979). On this view, perception is a process whereby agent dynamics

that are appropriately sensitive to environmental influences become perturbed

by the trajectory of sensory inputs that the system receives and transforms into

behavior appropriate to the circumstances. Furthermore, because the coupling

between an agent and its environment is two-way, an agent’s action can shape

its own perception. Agents not only perceive in order to act, but they also act

in order to perceive.

Because agents in the SED framework are dynamical, they are not vulnerable

to the criticisms that have been leveled against reactive agents. A reactive
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agent is one whose motor outputs depend only on its sensory inputs; it is

merely a function from sensation to action. Although such an agent can

participate in complex interactions when coupled to a dynamic environment,

its behavior is always subordinated to that environment since it possesses

no dynamics of its own. In contrast, the response of a dynamical agent is

determined at least in part by its own internal dynamics. Because it possesses

an internal state, a dynamical agent can respond differently to the same

sensory stimulus at different times, it can initiate behavior independently of

its immediate environment, it can modify its behavior based on its history of

interactions, and it can exploit long-term correlations in its environment to

organize its behavior in anticipation of future events.

One significant advantage of the SED framework is that it offers the possi-

bility of a uniform treatment of disparate behavioral and cognitive phenomena

that have often been seen as irreconcilable. At one extreme, some basic sen-

sorimotor behavior may be mostly reactive in character, with internal state

playing only a small role in “coloring” the agent’s responses to its environ-

ment. At the other extreme, some of our most cognitive behavior can be

conceived as being nearly decoupled from the immediate environmental cir-

cumstances, driven primarily by the temporal evolution of internal state. Of

course, most behavior is usually a mixture of external and internal influences,

with the relative importance of the two varying, sometimes substantially,

from moment to moment. Indeed, the interesting questions of how higher

cognitive processes arose from more basic sensorimotor competence during

the course of evolution and development seems much more approachable

within a theoretical framework that places them both on a common footing.

On this view, higher cognition does not necessarily alter our fundamentally

situated, embodied, and dynamic character, but instead augments it with a

vastly increased reservoir of internal dynamics.

How are we to understand the nature and role of this internal state within a

dynamical agent? The traditional computational interpretation of such states

would be as internal representations. But possessing an internal state is a

property of physical systems in general, and these states can covary with

states outside the system in quite complicated ways. Unless we wish to grant

representational status to all physical states (does a thunderstorm represent

the topography of the terrain over which it passes?), there must be additional

conditions that license the modifier “representational.” Unfortunately, despite

the fundamental role that the notion of representation plays in computational

approaches, there is very little agreement about what those additional condi-

tions might be. These considerations have led me to adopt a position of repre-

sentational skepticism (not, as some have suggested, anti-representationalism)

(Beer 2003). I view the representational status of an internal state as an empir-

ical question, to be settled according to the precise definition of the partic-

ular representational notion on offer. Thus, by not taking representation for
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granted, a dynamical perspective offers a broader theoretical playing field. On

the one hand, it offers the possibility of understanding what representations

are and when and how they arise. On the other hand, we may find that, at

least in some cases, the roles played by the internal states of a dynamical

agent simply cannot be usefully interpreted as representational.

What is the relationship between a SED approach to cognition and the

more familiar computational and connectionist approaches? Such a compar-

ison is fraught with difficulties. For example, we must distinguish between

the bodies of mathematics that underlie each of these approaches and the

theoretical claims that these approaches make. As mathematical formalisms,

computational, connectionist, and dynamical systems are all of roughly equiv-

alent power in the sense that they can each be used to construct models of

the same class of phenomena. Thus, there is no useful mathematical distinc-

tion to be drawn between these different approaches. This, I think, is one

of the ways in which van Gelder’s dynamical hypothesis goes wrong (Beer

1998).

In addition, we must recognize that computationalism, connectionism, and

dynamicism are not really scientific theories at all, because they themselves

do not make sharply falsifiable predictions. Rather, they are what I have

called theoretical frameworks (Beer 1995b). They provide a set of pretheoret-

ical intuitions, a theoretical vocabulary, a style of explanation, a worldview

within which particular falsifiable theories of specific cognitive phenomena

are formulated and analyzed. The computationalist framework, for example,

emphasizes the structure and content of the internal representations used by

an agent and the algorithms by which those representations are manipulated.

In contrast, the connectionist framework emphasizes the network architecture,

the learning algorithm, the training protocol, and the intermediate distributed

representations that are developed. In this sense, many connectionist mod-

els are still disembodied, unsituated, and computational (albeit distributed) in

nature (Harvey 1992/1996). Finally, the SED framework emphasizes the struc-

ture of the space of all possible trajectories of the brain–body–environment

system and the various forces, both internal and external to the agent, that

shape those trajectories so as to stabilize some particular pattern of behavior.

It is likely that all three perspectives will be important in any future the-

ory of behavior and cognition. For example, since the neural components of

a SED model are often recurrent connectionist networks, and since deliber-

ative reasoning is one of the cognitive phenomena that must eventually be

addressed, ideas and mathematical tools from both connectionism and compu-

tationalism are likely to play an essential role even in a SED-centered theory.

The exact mix of insights from these three theoretical frameworks (or other

frameworks yet unimagined!) that will ultimately prove to be the most fruit-

ful remains an open question that only ongoing empirical investigation can

resolve.
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6.6 Methodological issues

Taking the SED framework seriously raises many difficult methodological

issues. Studying just one component of a brain–body–environment system is

difficult enough, but studying the interactions of all three simultaneously is a

daunting task. Experimentally, we currently lack the instruments to monitor

and manipulate the activity of all the relevant neurons within the nervous

systems of intact, behaving animals, let alone the relevant properties of the

animal’s body and environment. Theoretically, we currently lack the math-

ematical tools necessary to understand large networks of densely intercon-

nected, heterogeneous, nonlinear dynamical elements, particularly in systems

that were evolved for their behavioral efficacy and not for their intelligibil-

ity in terms of traditional engineering design principles of modularity and

hierarchical decomposition.

For these reasons, a number of researchers have turned to the study of model

agents using dynamical neural networks and evolutionary algorithms (Beer

and Gallagher 1992; Cliff, Husbands, and Harvey 1993; Nolfi and Floreano

2000). In this approach, a model “nervous system” is embodied in a model

body, which is in turn situated in a model environment. The entire system is

evolved to perform some behavior of interest. A common choice of nervous

system model is continuous-time recurrent neural networks, which are known

to be universal approximators of smooth dynamics. Typically, only the neural

parameters are evolved, but in some work, network architecture and body

properties are also evolved. One significant advantage of an evolutionary

approach is that it minimizes a priori theoretical assumptions and thus allows

the space of possible brain–body–environment systems capable of generating

a particular behavior to be explored.

This evolutionary methodology has already been applied successfully to a

wide range of interesting behavior (Nolfi and Floreano 2000). A great deal

of work has focused on sensorimotor behavior, such as orientation, legged

locomotion, object avoidance, and navigation (Beer and Gallagher 1992;

Kodjabachian and Meyer 1998; Vickerstaff and Di Paolo 2005). Another line

of work has focused on the evolution of learning behavior (Yamauchi and

Beer 1994; Floreano and Mondada 1996; Tuci, Quinn, and Harvey 2002;

Izquierdo-Torres and Harvey 2006). In addition, there has been considerable

work on visually guided behavior (Cliff et al. 1993) and its application to cat-

egorical perception, selective attention, and other cognitively interesting tasks

(Beer 2003; Di Paolo and Harvey 2003; Ward and Ward 2006). Finally, the

evolution of communication has also been an active area of research (Di Paolo

2000; Marocco, Cangelosi, and Nolfi 2003; Steels 2003; Nolfi 2005). Thus,

although there are difficult open issues in scaling evolutionary approaches

to increasingly complicated behavior, one could argue that the agents that

have already been evolved are interesting enough that their careful analysis
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could teach us many things about the dynamics of brain–body–environment

systems.

Indeed, for me, the main interest is not in evolving such model agents per se,

but rather in analyzing the resulting brain–body–environment systems using

the tools of dynamical systems theory (Beer 1995a, 1995b, 2003; Husbands,

Harvey, and Cliff 1995). The primary purpose of such an analysis is to build

the intuitions, theoretical concepts, and mathematical and computational tools

necessary for understanding the dynamics of brain–body–environment sys-

tems. While DST provides a solid foundation for such investigations, many

additional issues must be addressed. For example, there are different levels at

which the dynamics of a brain–body–environment system can be analyzed,

including the autonomous dynamics of the entire coupled system, how the

coupled behavior arises from the interaction between the nonautonomous

environment and agent dynamics, how the nonautonomous agent dynam-

ics arises from the interaction between the nonautonomous body and neural

dynamics, and how the nonautonomous neural dynamics arises from the

architecture, intrinsic and synaptic parameters of the neural elements.

A final issue that must be addressed is understanding nonautonomous

dynamics. The mathematical tools of DST are most highly developed in the

case of autonomous dynamical systems, when the analysis can focus on

attractors and their bifurcations. However, as mentioned above, when we

wish to understand the contribution of a particular component of a brain–

body–environment system, we must decompose the coupled system into

interacting nonautonomous subsystems, and study their transient responses

to time-varying inputs received from the other components. Unfortunately,

the mathematical tools for analyzing transient dynamics require significant

further development.

6.7 Prospects

Like both computationalism and connectionism, the situated, embodied, and

dynamical framework described in this chapter has its roots in ideas first

articulated in the 1940s and 1950s. However, because the modern form of

the SED framework only emerged in the years 1985–1995, it has had far

less time for development than have the computational and connectionist

frameworks. The number of people working within the SED framework is

also considerably smaller at present. Despite these disadvantages, situated,

embodied, and dynamical ideas are having a major impact on thinking in

cognitive science, AI and robotics, neuroscience, developmental psychology,

and philosophy of mind.

In order to further explore the scope and limits of the SED framework,

and to clarify the best mix of computational, connectionist, and SED ideas

necessary for understanding the mechanisms of behavior and cognition,
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considerable further development is necessary. First and foremost, this will

require the construction and analysis of many more concrete model agents,

especially those of a more cognitively interesting nature. This in turn will

require the continued development of techniques for scaling evolutionary

techniques and dynamical analysis to larger systems and the further develop-

ment of techniques for analyzing the transient dynamics of nonautonomous

dynamical systems. Finally, there is a need for improved education in dynami-

cal systems concepts within the cognitive science community, and for software

to support the dynamical analysis of brain–body–environment systems.

Further reading

Clark, A. (1997). Being There: Putting Brain, Body and World Together Again.

Cambridge, MA: MIT Press. An early philosophical treatment of situated,

embodied and dynamical approaches to cognition.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,

and Technology of Self-Organizing Machines. Cambridge, MA: MIT Press. A
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Port, R. F. and van Gelder, T. (eds.) (1995). Mind as Motion: Explorations in
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Spivey, M. (2007). The Continuity of Mind. New York: Oxford University Press. This

book assembles an impressive array of behavioral and neurophysiological
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Schöner, G., Dose, M., and Engels, C. (1995). Dynamics of behavior: Theory and

applications for autonomous robot architectures. Robotics and Autonomous

Systems 16: 213–45.

Skarda, C. A. and Freeman, W. J. (1987). How brains make chaos in order to make

sense of the world, Behavioral and Brain Sciences 10: 161–95.

Smithers, T. (1995). Are autonomous agents information processing systems?, in L.

Steels and R. Brooks (eds.), The Artificial Life Route to Artificial Intelligence

(pp. 123–62). Hillsdale, NJ: Lawrence Erlbaum.

Steels, L. (2003) Evolving grounded communication for robots, Trends in Cognitive

Sciences 7: 308–12.

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. Reading, MA: Addison-

Wesley.

Suchman, L. A. (1987). Plans and Situated Actions: The Problem of Human–

Machine Communication. Cambridge University Press.
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