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Maps, Game Theorq, and 

Computer-Based Modeling 

Rs WE SEARCH for deeper understanding of the relation between 
numbers and models, maps are an appropriate starting point. 
Maps eliminate detail in a straightforward way and, like garnes, 
they are among the earliest model-artifacts. Moreover, our longer
range objective, a general setting for emergent processes, is a kind 
of map, so a better understanding of maps will helD define that 
objective. 

Think first of a simple map, such as a road map Figure 3.1). 
If it is fairly complete, as is true of most state road maps, then the 
cities, towns, and villages are represented by dots or squares of 
varying sizes, and the roads connecting these population centers 
are represented by lines of various colors representing road qual
ity. Some lakes and rivers may be indicated, but in general the map 
concentrates on population centers and roads. Two kinds of rela
tions are preserved: 

1. There is a one-to-one relation between the population centers 
and the dots on the map. Each city, town, and village is repre
sented by a dot. 

2. The dots are arranged on the map in the same configuration as 
the population centers in the actual geography of the state. 
That larger cities that are close together in the state are rep
resented by large dot~ that are close together on the map, a 
town that is close to the state boundary is represented bv a 
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Road map 

L~~
\ 

Landscape 

ICeci n'est pas un paysage.] 

FIGURE 3.1 
A road map as a model. 

smaller dot close to the edge of the map, and so on. However, 
all distances have been scaled down, so that cities that are 
twenty miles apart in reality are separated by two inches on the 
map. The curves, straightaways, and intersections of the roads 
are represented on the same scale. 

A moment's thought shows that few details are retained in this 
kind of map. We learn little about what we will see at the roadside 
in driving one of the roads, nor even much about minor zigs and 
zags in the road (those changes in direction too small to show up 
at the scale of the map), let alone any details about what the towns 
look like. What is retained is the essential information about get
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ting from one place to another under normal circum5taTJCes. Road 
construction or a windstorm can make the route suggested by the 
map infeasible or impossible. 

It is evident that scale plays a m~or role in the construction of 
maps. Scale also asserts itself when we extend our view beyond 
maps to other kinds of models. We at once encounter a whole class 
of models called scale models: scale ships, scale railroads, scale 
planes. We also expect scale in most statues and representational 
sculpture, though a monument like Mount Rushmore may be 
scaled to be than the original. However, if we look still far
ther afield, we encounter models in which scaling plays little or no 
role. Scaling is a special case of a deeper concept, c!!!yespon~. 

1/ We automatically get correspondence when we produce a 
r scaled model, but correspondence is possible without scaling. To 

construct a model using correspondence, we first select the details 
or features to be represented, then constTuct the model so that 
some part of the model corresponds to each selected detail (see Fig
ure 3.1). Think of a cake recipe. It models the steps we actually use 
to produce a cake. Each step in the recipe (for instance, "add a 
cup of sugar") corresponds to a complex activity involving a series 
of physical movements and measurement~. 

Art Samuel's checkersplayer is a case in point. The correspon
dence in Samuel's model is between features of the game and 
parts of his computer program; scale does not enter. For example, 
corresponding to the "pieces ahead" feature is a set of instructions 
that actually carries out the counting of pieces. This correspon
dence between features and computer subroutines will be exam
ined more carefully in the next chapter, after some of the basic 
ideas are developed here. 

Correspondence is best explained with the help of some nota
tion. Let X {Xl, X\!, • . • be a list of details to be modeled, and 
let Y {Yh Jb ... ,Ynl be the corresponding aspects of the model. 
Then the correspondence is shown by simply lining up the two sets 

x<l HY2, ... ,xnHYnl. In the parlance of mathematics, we 
have a one-to-one f1J.nction, f X~ Y, mapping details of the 
into aspects of the model. The object~ on the left (the x's) are 
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called the arguments of the function, and the aspects on the right \ 
(the is) are called the values of the function. It is interesting that 
mathematicians use the term mapping, as a technical term, when 
they are being precise in defining functions. The function concept, 
or mapping, stands at the center of most of mathematics. Because 
the construction of a model depends on setting up correspon
dences, the function concept lets us get at the precise heart of 
model building. It also lets us bring important mathematical tools 
to bear in our attempts to model systems that exhibit emergent 

phenomena. 
We need not go deeply into the mathematics to see some bo

nuses from using functions to discuss models. First of all, we can 
bring numbers into play, with an increase in clarity and precision. 
It is one thing to discuss "economic health" in rhetorical terms, 
such as "nervousness in the production sector"; it is quite another 
to discuss it in terms of the familiar newspaper chart of changes in 
"gross domestic product" over time (see Figure 3.2). Such a chart 
matches dollars, as a measure of productivity, against a sequence 
of dates. This correspondence of numbers to numbers-a func
tion-has enough precision to allow us to determine trends and 

make forecast.s. 
We set up a correspondence between the world around us and 

numbers any time we read an instrument. The numbers on a tire 
gauge, for instance, correspond to the tire's inflation. Even a cal
endar is such an instrument, transforming the passage of time into 
numbers, as did the newspaper chart. It is this transformation that 
gives instrument~ and gauges a central role in experimental sci
ence. The instruments make it possible to build numerical models 
of the phenomena being investigated. Because computers are, 
above all, number manipulators, such transformations are pivotal 

in constructing computer-based models. 
The relation between functions and correspondences also sug

a way of eliminating detail when we construct a model. Fea
tures in the checkersplayer are a case in point: many boards can 
share the same feature value. For example, there are many boards 
where the opponent has one more piece than the checkersplayer. 
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Presentation as a correspondence: 

World exports 

x f(x) 
(year) (trillion $) 

1950 0.4 
1960 0.7 
1970 1.2 
1980 2.3 
1990 3.5 

Graphic presentation: 

World exports 


Dollars (trillions) 


4 


• 
3 

• 
2 

•1 

• 
Year 

1950 1960 1970 1980 1990 2000 

Presentation as an equation: 

(1/4)
f(x) =0.4xl0 =	world exports at t 

where t = (x • 1950)/10 
andx= year 

FIGURE 3.2 
Functions and correspondence. 
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This is a many-to-one correspondence. The function that defines 
the correspondence assigns the same number to many different 
objects. To use the precise terminology introduced earlier in this 
section, many arguments of the function have the same value. In 
model building, a many-to-one function lets us map objects that 
differ in detail into a single aspect of the modeL 

Game TheorQ 

It turns out that there is a close relation between maps and games. 
This is not so surprising given the maplike character of the boards 
on which many board games are played, but the relation goes 
deeper than one might initially suspect. This deeper relation, 
which will be of great help in formulating a general setting, comes 
clear in the context of game theory . 

Though board games are very old, and games of chance have 
for centuries played a role in the development of mathematical 
probability theory, it was not until the first half of the twentieth 
century that a genuine theory of games came into being (von Neu-/ 
mann and Morgenstern, 1947). Game theory, since its inception, 
has strongly influenced statistics, information theory, and partiCtl
larly economics, including recent cross-fertilizations yielding evo
lutionary game theory (see Maynard-Smith, 1978; Axelrod and 
Hamilton, 1982). The details of game theory fall to one side of our 
current exploration, but several concepts from the theory serve us 
welL For our purposes I concentrate on games that are not games 
of chance, such as checkers, chess, and Go, though much ofwhat I 
have to say is applicable also to games involving probabilities 
(chance). 

States 

The first concept is the state ofthe game. For a board game, this state 
is simply the arrangement of the pieces on the board at any point 
in the play. From that point on, the play of the game depends only 
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on that arrangement, not on how it was attained. (There are rare 
exceptions, such as castling in chess or doubling in backgammon, 
but these can be handled with the help of an auxiliary "piece," as 
when a doubling cube is used in backgammon.) In short, the state 
of the game at any point in the play is a sufficient summary of past 
history for determination ofall future possibilities. In this the state 
of the game is closely related to the state of a physical system. For 
instance, we record the state of a container of gas under pressure 
(a tire or a scuba tank) in terms of its pressure, its temperature. 
and its volume. If we puncture that container, what happens next 
is determined by that state. When the state of a system is correctly 
defined, its future dynamics depends only on its current state. 

The state space of a board game is simply a collection of all ar
rangements of the pieces on the board that are allowed under the 
mles of the game (see Figure 3.3). The qualification "allowed un
der the mles" is important (see Figure 3,4). In chess, the pieces 
can be arranged on the board in many ways, but only a small frac
tion of the arrangements are attainable under the game's rules. 
For example, the mles of the game require that the piece called a 
bishop always move to a square of the same color as its starting 
square (it only moves diagonally on the checkerboard). Moreover, 
the bishops on a given side start on different colors, so we know 
immediately that any configuration with these two bishops on the 
same color is illegal. More carefully: a board game starts with an in
itial arrangement of pieces specified by the mles; a move occurs 
when the pieces are rearranged under the mles--often the move
ment of a single piece. Successive moves determine the play of the 
game. The set of all arrangements (states) that can be attained un
der the mles is the game's state space (see Figure 3.5). 

Tree ofMoves 

The most important concept from the theory of games, for our 
purposes, is the tree ofmoves (see Figure 3.5). The root of the tree is 
the game's initial state, the first branches lead to the states that can 
be attained from the root, the branches on those branches lead to 
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The state space (set of distinct lawful configurations) for arrangements of black 

balls in four locations: 

(16 distinct configurations) 

Addition of white balls; the new color break.~ symmetries in the arrangements of 
black balls, increasing the number of configurations: .,
.,.,.,.,
...,.,., 
.,., .,..
..., .,.. .,
~..., ... .,., .,
.,., 

(73 distinct configurations) 

FIGURE 3.3 

Some simple state spaces. 
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The state space for constrained (alternating) placement of black and white balls 
in four locations: ., 

;. ....
"'" 

.... ......."" 

,,~r----;.- ....,., 
.,;- .... 

(41 states) 

FIGURt: 3.4 

Legal configurations. 


the states that can be attained in two moves, and so on to the leaves 
of the tree, which are the ending states. The leaves determine the 
outcome of the game. It is the succession of choices allowed on 
the way to a leaf that makes the game interesting. 

For real board games, in contrast to some games invented for 
theoretical purposes, the result is somewhat more convoluted than 
a tree. In games, unlike trees, different branches may end up at 
the same state, so there may be fewer states than there are 
branches. We can move a castle and then a bishop and finish in ex
actly the same configuration as if we had moved the bishop first 
and the castle second. In particular, many branches may wind up 
at the same leaves (end poinIs); in chess, many differen t lines of 
play can end with the king checkmated in the corner by a queen 
and a castle. This additional complication doesn't much affect the 
present discussion, but I will talk about "ways of playing the game," 
(instead of about leaves) as a way of indicating this peculiarity. 
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The rules constrain the game's states (arrangements). The states can be arranged in a 

tree that shows the order in which the states can be attained • 
.,Initial state 

... y .. 
Some states attainable ... 


on first move 

.,., ., 

.... J>'" "'y-, 
Some states attainable ~.:A:IIiI ... ....-~ 


on second move ".,"., ~~ 


Third move • .,.. 
y., 

....,
Terminal (leaf) state; 

white wins 


FIGURE 3.5 

Part of a game tree for tic-tac-toe. 


All in all, games are more bushes than trees. The number of 
leaves (ending configurations) grows very rapidly, even when the 
branching process is simple. Indeed, it is this bushiness that pro
vides the fascination and unpredictability of games. Consider a 
board game in which there are ten possible moves (branches) 
from each configuration (state), including the initial configura
tion. If the game terminates after two moves, there are 10 x 10 
1{)2 = 100 distinct ways of playing the game. If the game terminates 
after ten moves, there are 1010 = 10,000,000,000 ways of playing the 
game. Termination after fifty moves-a length and number of op
tions roughly equivalent to chess-yields 1050 ways of playing the 
game, a number which substantially exceeds the number of atoms 
in the whole of our planet Earth. 

We begin now to see that a small number of rules can define a 
game so complicated that we will never exhaust its possibilities. If 
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we had a record of all the games of chess that have been played 
over the centuries, it is doubtful that any two would have identical 

move sequences (setting aside those that either terminated early 
or were deliberate replays of annotated games). It is this perpetual 

novelty that makes chess and Go classic games that continue to 
challenge humans after centuries of careful study. By the same to
ken, tic-tac-toe remains a children's game because its possibilities 

are quickly exhausted, once certain patterns are recognized. 

Strategies 

In any game that is at all complex, a game plan or strategy is vital 
for effective play. Roughly, a strategy is a prescription that tells us 
what to do as the game unfolds; it specifies a sequence of deci
sions. The game tree provides a way of making this rough idea pre
cise. A sequence of decisions made during the play of a game 

.,Initial state 

...-" 
J<'irstmove ..... .,.. 

.. 6!'... ..."" 
Second move .......,
---..
....--.Third move 

;" 
.......... 


Last move; ....
white wins 

~ice lIlll:b~ strategy 

FIGURE 3.6 
Opposing strategies determine a path in the g'dlTIe tree for tic-tac-toe. 
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traces a path in the game tree (see Figure 3.6). So we can define a 
strategy in terms of the branches it chooses in the game tree. In 

game theory a cmnplete strategy prescribes a branch (move) for each 
state (board arrangement) that can be encountered. In other 
words, a complete strategy tells us what to do in any possible situation. 
Note that a strategy may be good or bad. It is simply a prescription 
for what to do; it could be a surefire prescription for losing. 

Here is another point where functions are useful. We can use a 

function to define the correspondence between game states and 
the moves prescribed by a strategy. The function first assigns a 

move to the initial state (say, "move the pawn that is fourth from 
the left ahead one"); it then assigns moves to each of the states that 
can result from the opponent's response to that move, and so on 
to the end of the game. For every strategy a function exists that de

scribes that strategy. 

More 

given player wiU noteflcounter 
ticn can supply a m~ing~$sul!lumn1Y 
strategy, then, ts'a ·miJlJDinQ a:S-4S:wnele :thebli)tie>As ·b\~maJl:~~~ 
constrained by the set 

In a game with two or more players, a multiperson game, we can 

attribute a strategy to each player. Once each player fixes on a 
strategy, the outcome (leaf of the game tree) is determined 

aside strategies that use random move choices, say by the roll 
of dice). To put it another way: the combined strategies select a 

path through the move tree that leads from the root node to a par

ticular leaf (see Figure 3.6). 
When the players have chosen strategies at the outset, it would 

seem that all the interest and surprises have been removed from 
the game. All that apparently remains is a kind of mechanical play
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ing-out to reach the predetermined end. But this reasoning omits 
a factor: the players do not know their opponents' strategies. Each 
player has decided what to do in each contingency, but each player 
has no idea what particular contingencies will arise because of the 
other players' actions. So the individual player wnnot predict the 
final outcome, or indeed the outcome of the first few moves, even 
though that outcome is predetermined. For each player the game 
will take unexpected twists and turns. 

\!\Then a game is played repeatedly, the unknown aspects of 
the other players' strategies may become clearer. Consider a IWo
person game where the opponent has fixed on a particular strat
egy. Observing the opponent in repeated plays of the game can 
tell us what the opponent does at different branch points 
(choices) in the game tree. We can Ilse this information to build a 
model of the opponent's strategy. The resulting model will lack 
many details, because there are just too many possible strategies to 
uncover a complete description through "trial and error." Never
theless, if the model is correct in some respects, we can do better 
with it than without it. 

These observations apply to "games" much more general than 
board games. Consider a game in which one of the opponents is 
"nature," as when we try to execute a plan (strategy) for enhancing 
an ecosystem (nature). The outcome may be difficult to 
even if nature obeys a fixed set of rules (laws). Still, through obser
vation of the eflects of choices over time, we can begin to build a 
model of the ecosystem and its responses. Much scientific en
deavor takes this form. 

Two major themes emerge at this point: 
1. In realistic situations, a strategy cannot be defined by listing 

all the game states with the moves prescribed for each state. Too 
many states exist in even a modest game to make such a list feasi
ble. This is so even when we take into account the storage capacity 
and speed of the largest computers; the number of states we calcu
lated earlier for move trees is so large that no foreseeable com
puter could store them. The recent chess-playing programs 
provide a direct example. Even with the tremendous storage ca-

I'• 
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pacity and speed devoted to them, they do not attempt an explicit 
strategy. Rather, the programs are highly selective in the way they 
search the tree, changing the search as the game unfolds. They 
test only a minuscule fragment of the whole. 

To say the same thing in mathematical terms, we cannot define the 
strategy function explicitly by listing all (state, move) pairs, (s. g(s)), for 
all states 5 in S. 

Instead of an explicit definition. we define strategies in much 
the same way we define games, via a set of rules. The mles in the 
case of strategies are usually mles of thumb. For example, in chess 
these rules embody principles like "Build a strong pawn forma

" "Control the center," "Look for 'fork' attacks," and so on. 
Such rules pick out game features that occur frequently and are 
relevant to decisions at various points in the game. In so 

group states into clusters, where the states in a given cluster 
have a feature that suggests similar decisions or moves. In this way 
we obtain an effective reduction of the enormous size of the game 
tree and make possible an overall prescription that controls play 
throughout the game. The extended discussion of Art Samuel's 
checkersplayer in the next chapter will show how this is done. 

From this perspective, we usc repeated plays of the game to dis
cover and combine building blocks (rules of thumb, features) in 
order to construct a feasible strategy. The task is much less daunt
ing than trying to define a strategy explicitly as a list of states and 
prescribed moves. Even if the strategy has some components that 
are not easily described in terms of building blocks, it is a valuable 
starting point for modeling the strategy. This point of view also 
suggests we assume that the opponent's strategy is constructed 
from a limited set of building blocks. 

If nature is the "opponent"-if we are taking the role of scien
tists-we do much the same. We attempt to model the rules of the 
universe, though with less reason to believe that the opponent is 
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restricted to feasible strategies. (Einstein's en de coeur, "Quantum 
mechanics is very impressive, but I am convinced God does not 
play dice," is clearly an expression of faith, not an observation.) In 

science, as in games, part of the justification for making this as
sumption about building blocks is that it works. Newton's laws, 
Maxwell's equations, Mendeleev's periodic table, and Mendel's 

genes all tell us a great deal about the way the world operates. 
Note that surprises are in store, even ifwe should be able to un

cover a set of fixed laws that determines all of nature's possibilities. 
Mter several centuries we still uncover new possibilities inherent 

in Newton's equations, and this set of laws most assuredly docs not 
encompass all of nature's possibilities. 

2. Our simplifying assumption to this point has been that oppo
nents employ fixed strategies, but this simplification sidesteps 
most of what happens when games are played repeatedly. 
nents learn. A more realistic view is that. all players are simultane

trying to build models of what. the other players are doing. 

Under this extension, the situation becomes much more compli
cated. An observer who has an omniscient overview of the game 
encounters surprises akin to those encountered by individual play
ers. Even if that observer knows the initial strategies and the de

tails of the individual learning procedures, it is next to 
to predict the course of the game. Emergence and perpetual nov
elty are ever present in games where the opponents are adapting 

to each other. 

Emergence-R First ~ook 

This view, of opponenL~ adapting to each other's strategies, en
courages a more careful look at emergence in rule-governed sys
tems. A computer, once supplied with the rules of a game, and the 
rules that determine the players' strategies and changes in strategy 
(setting aside chance moves), can, move by move, determine the 

course of the game. So the overall system is fully defined. Despite 
this, an outside observer will be hard put to determine what hap-
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pens next, even after extended observation. The strategies co
evolve in the computer, each strategy adjusting to its experience 

with its opponents. This coevolution exhibits the creativity we ex
pect of any evolutionary process; the computer is continually get-

into parts of the move tree not previously observed. Species of 

rise to dominance and disappear, players mimic each other, 
and so on. VVnat, if anything, shows the regularity and predict
ability we expect of emergent patterns? 

prediction is difHcult in these circumstances, it is not a 

hopeless task. Everything depends on the level of detail we 
of the prediction. Meteorology provides a useful simile. Weather 
patterns are never the same in detail, and even the larger features, 
such as fronts, cyclones, jet streams, and the like, show a remark
able diversity. Moreover, weather models do not yield exact predic
tions of such obvious events as the amount of rainfall to expect 
locally on the morrow. Nevertheless, modern weather prediction is 
very helpful. It does forecast the likelihood of rain and severe 
storms, it does give the likely temperature ranges, and the five-day 
forecasts of average temperature and rainfall are much more accu
rate than could be attained by simply using past statistics for that 
time of year. 

Chaos theory is often cited as an explanation for the 

of predicting weather and other complex phenomena. RoughlY] 
chaos theory shows that small changes in local conditions can 
cause major changes in global, long-term behavior in a wide range 
of "well-behaved" systems, such as the weather. In an oft-cited ex

ample, the flapping of a butterfly'S wings in Argentina can (even
tually) cause worldwide changes in the weather. There is a sense in 
which this is true: if we knew all the values for all the relevant 
variables worldwide, a la Laplace Singer, 1959), we could 
predict the weather indefinitely far into the future. With such a 

model we could determine the long-term weather pattern with 
and without the flapping of the butterfly's wings. We would see 
that the two weather patterns would eventually diverge to a 

of no correlation. 
This explanation ignores important factors in real weather pre
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diction. Because ~ptPfW~ do not know the values of all the 
relevant variables, they do not work at a level of detail, or over time 
spans, in which chaos would be relevant. The predictions work 
with large masses of atmosphere over short time spans; so butter
flies, or jet airplanes, produce negligible effects. Moreover, rather 
than trying to develop predictions based on remote initial condi
tions, as with the butterfly meteorologists start anew each 

the most recent data. These observations continua 
bring the state of the model into agreement with what has actually 
occurred. Under this regime chaos theory has lillie relevance. 

The key to effective weather prediction, then, is the discovery 
and use of the mechanisms (building blocks) that generate 
weather. This approach originated with the discovery of fronts by 
the Norwegian meteorologist Vilhelm Bjerknes in the part of 
the twentieth century. Curiously, Bjerknes lived in Bergen, Nor
way, where weather prediction is remarkably easy throughout most 
of the rains! The model that Bjerknes originated has been 
progressively improved, through the use of more sophisticated 
mechanisms (and equations) governing fluid flow, the discovery of 

streams, and the recognition that distant large-scale phenom
ena, such as the Pacific High, can be used to guide long-term pre
dictions. Computer-based models, strongly advocated at the very 
beginning of the computer era by von Neumann Korth, 
1965), significantly advanced both the detail and the time span of 
weather prediction. 

Thus, complexity and even chaotic effects need not forestall 
of emergent phenomena. The key to deeper under

as with weather prediction, is to determine the level of 
detail and the relevant mechanisms. At the right level of detail, the 
model's changing states play the role of the configurations in a 
game. Using mechanisms as building blocks, we can construct 
models that exhibit emergent phenomena in much the way that 
interacting strategies in a game produce patterns of interaction 
not easily anticipated from inspection of the rules. The 
mechanisms play the role of the game's rules, 
is possible while 

~ 
MAPS, GAME THEORY, AND COMPUTER-BASED MODELING • 45 

Even when we have the right level of detail and the relevant 
building blocks, perpetual novelty is still typical. As in games, 
though the definition is simple, the state space for models of com
plex systems is very large. And, as in games, the model rarely or 
never returns to states already visited. This perpetual novelty ren
ders it difficult to make predictions, even when the mechanisms 

and the initial state are specified. If the basic mechanisms 
provide for learning or adaptation, the difficulty increases enor
mously. Still, by attending to selected details, we can usually extract 
recurring patterns, like front~, in the complex unfolding se
quence. When these recurring patterns are regularly associated 
with events of interest, we call them emergent properties. We will 
look much more closely at the prediction of emergence-the 
"when,M " and "what"-once we have a general setting in 

Uqnamic Models 

In the previous discllssion, we have moved from models that have 
such as scale models, to models with changing con

called dynamic models. The object in construct
ing a dynamic model is to find unchanging laws that the 
changing configurations. These laws correspond roughly to the 
rules of a game. In a game, the rules say how the configurations 
(states) change as different moves are made; the players affect the 
course of the game by choosing moves. "''hen we consider the 
weather system, we usually think of it as autonomous, proceeding 
without (or despite) our intervention. Still, the laws of 
specifY the succession of states-the weather configura 
hours from now, twenty-four hours from now, and so on. Ifwe had 
effective means of weather comrol, then the laws of change would 
specifY how those controls affect the unfolding weather sequence. 

To build a dynamic model we have to select a level of detail that 
is useful, and then we have to capture the laws of change at that 
level of detail. There are potential conflicts. It may be auite diffi
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cult to construct a detailed model that is "faithful" to the system 
being modeled. Weather prediction models provide instructive ex
amples. Predicting that the atmospheric temperature will be less 
than the boiling point of water may be reassuring, but it is not 
much of a weather prediction. We want more detail, but then we 
have to deal with laws of change that involve fronts, jet streams, 

and the like. 
There is, of course, no guarantee that we can find simple laws of 

change for the level of detail selected. Indeed, the art of model 
building turns on selecting a level of detail that admits 
laws-a point to which we'll return in later chapters. Setting the 
level of detail turns mostly on defining the model's states Fig
ure 3.7). For games, we defined the state of a board game as 
the configuration of pieces on the board; for Bjerknes' weather 
model, the current state is the configuration of fronts, jet streams, 
and the like on the weather map. For dynamic models in general, 

WORLD 
at time t 

'" , 
. 

"\--'/ 

(detectors, gauges, etc.) 

oo......tI= 111(1)1 
MODEL 
at time t 

World configurations producing the same readings are lumped into a single 
equivalence class represented by a single state of the model. 

FIGURE 3.7 

Observation and state of the model. 


MAPS, GAME THEORY, AND COMPUT~:R-BAS~:D MODELING • 47 

the features and details incorporated in the model's states deter
mine the level of detail. 

Once we define the model's states, our object is to define the 
laws of change that work at this level. Laws of change are stated 
precisely with the help of a transition function (see Figure 3.8). The 
transition function assigns to each state the state that will occur 

MODEL MODEL 
at time t at time t +1 

The model's transition function, often specified via 
partial differential equations or computer algorithms, 
captures the notion of causality. 

The relations of world configuration and observation 
to the states and transition function of the model are 
summarized by the following diagram: 

WORLD WORLD 
at time t at time t +T 

(detectors, gauges, etc.) rTl.--.-i:"":rTlrTlrTlr"1 

Observationlll~mwwrril 
algorithm 

MODEL MODEL 
at time t at time t +1 

FIGURE 3.8 

Transition functions. 
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next under the laws of change. Where the course of change of the 
system can be affected from "outside"-where the system can re
ceive inputs from the outside-the transition function a 
different correspondence for each input to each state. That is, dif
ferent inputs cause different next states, so the transition function 

nrrwides a correspondence between each . 
and the state that results. The transition function is reminis

cent of the function that defines a strategy, where moves are the 
counterparts of inputs. Newton's equations again provide an ex
ample: they define the dynamics of gravity via a transition function 
that relates mass and acceleration (states of a particle), and force 

(an input). 
If the transition function (law) is "faithful," we can make predic

tions into the indefinite future. Knowing the current state and in
put, we can determine the next state. Then, knowing that state 
and the next input, we can determine the state after that, and so 
on indefinitely. Therein lies the great advantage of a faithful for
mal model: by simply iterating the use of the transition function, 
we can explore future possibilities. The transition function deter
mines the future fully and unambiguously (if the inputs are 
known). The only uncertainty resides in the appropriateness of 
the level of detail and in the faithfulness of the transition function. 
That is, the uncertainty lies in the model's interpretation, the map
ping between the world and the model. 

This capacity for prediction provides the deep connection be
tween modeling and emergence. The (usually simple) specifica
tion of a model-the transition function-can yield a limitless 
array of consequences and predictions. A well-conceived model 
can, like chess, yield organized complexities that repay decades 
and centuries of study. Moreover, these complexities may involve 
possibilities not conceived by the modeler, as when Newton's 
model is used to guide rockets to Mars and to determine the evo
lution of galaxies. As ",,'ith Jack's magic seed, Newton's model 
opens worlds of wonder that transcend the simolicitv of the start

ing point. 
The idea of "faithfulness" takes us from a game, which may 
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remotely reflect the world, to a model that correctly reflects se
lected aspects of the world. Interestingly, faithfulness in this sense 

definition: we say a model is perfect if 
satisfies a criterion called ofthe dia

holds when the order in 

For any world configuration, an observation of the world followed 
by execution of the model's algorithm 

WORLD 
at timet 

-
• 

~--y) 
MODEL 
at timet 

MODEL 
at time t +1 

should yield a prediction that matches an observation of the world 
after a fixed interval of time T elapses. 

WORLD WORLD 

@
ttime~_ "18WS"(tU:,,"I+)
("; ~ "; 
'~-~~ \~--/ 

~-

FIGURE 3.9 

~\)
MODEL 

attimet+l 

of the diagram-a model. 
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which we do things is irrelevant to the result. Ifwe take a step right 
and then a step down, we arrive at the same place as if we take a 
step down and then a step right. Addition is commutative: 5 + 3 
3 + 5. To use this idea for models, we set up a diagram that shows, 
in its upper half, one time-step of change in the world (say, possi
ble changes in the weather in an eight-hour period). In the lower 
half of the diagram we show a one-time step change in the model, 
under its defining law of change (transition function). We can ob
serve the world now (left side of the diagram) orlater (right side). 
In either case that observation determines a state for the model. 
Commutativity of the diagram holds when, for every state, taking 
the observation (down) and then executing one time-step in 
the model (right) yields the same result as waiting one time-step 
in the world (ri2:ht) and then takin!! an observation (down). That 
is, the model's law of correctly predicts the result of a fu
ture observation. Because this definition holds for all states, we 
can iterate the process to get predictions indefinitely far in the fu
ture, as suggested earlier. Of course, we can only sample the states 
of the world, even if we are only interested in a sharply delimited 
region (for instance, an experiment). So in practice we can 
approximate the "all states" requirement for a perfect model. Nev
ertheless, the concept of a perfect model supplies a valuable guide 
for constructing useful models. 

Computer-Based Models-R Closer Look 

I have mentioned computer-based models several times, and they 
have a critical role in the construction of dynamic models. They 
have become ubiquitous in modern science, being used to model 
everything from the spread of epidemics to fusion in the sun. It 
will help us to understand dynamic models if we look at computer
based models a little more closely now, though still in preliminary 
fashion. Earlier I asked how we can use numbers, and coordinated 
changes in numbers, to simulate the flight of a jet over Chicago 
in a thunderstorm. I want now to give a partial answer to that 
question. 
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The starting point, once again, is the notion of state. The natu
ral question is, "What can we possibly mean by the state of a jet air
plane flying over Cbicago?" The answer is closely connected to the 
information the pilot uses to fly the jet. 

To get at this connection between information and state, let me 
start with a simpler system: the control panel of the family car. The 
car's control panel is not in principle much different from that of 
the jet, it is just much, much simpler. It tells us only the essentials 
that we need to know when driving, typically the speed of the car, 
the fuel level, the engine temperature, the battery charge, and the 
oil pressure. These readings model the state of the car, at a certain 
level of detail, when it is under way. We could add more readings, 
such as the air pressure in the tires or the amount of antifreeze in 
the radiator, to get a more detailed state. This more detailed state 
would provide the wherewithal for a more sophisticated model; 
however, decades of experience have shown that the gauges first 
mentioned are sufficient for operating the car in most situations. 

Because the jet is far more complicated, the pilot's compart
ment is filled with a panoply of displays, gauges, dials, and warning 
lights that provide information about the conditions that affect 
the jet's flight. They tell about the plane's speed and position, the 
amount of fuel in its v"ariOllS fuel tanks, the operating condition of 
the engines, the position of the landing gear, and hundreds of 
other bits of data. Indeed, there is enough information for the pi
lot to fly the plane "blind," using instrument readings alone. 

For both the car and the jet, the displays and gauges produce 
readings that either are numbers or are easily reduced to num
bers. A warning light can read either on or off, which can be repre
sented as a 1 or a 0, and even the sophisticated positional display is 
presented by an array of dots (called pixels), which can be repre
sented as an array of 1 's and O's. In other words, it is easy to reduce 
the information on the control panels to numbers. These num
bers can, as usual, be stored in registers in the computer. Together 

define the state of the model, much as the arrangement of 
pieces defines the state of a board game. 

We give the computer a representation of the state of the model 
entering these numbers into the storage registers. Then we en
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ter instructions (a program) that cause these numbers to change 
over time as specified by the transition function. This is the coun
terpart of defining the rules of the game. The numbers in the reg
isters change in a way that mimics the state changes in the object 
being modeled. The universality of the general-purpose computer 
assures that any transition function defined by a finite number of 

rules can be so mimicked. 
As in a game, we now confront the notion of choice. The driver 

or the pilot can choose among alternatives, such as making the car 
or jet go faster or slower. Phrased in terms of states this means 
once again, from any state we can construct a tree of legal alterna
tives. In a game, these alternatives were the legal moves allowed 
by the rules. In the case of the car or the jet, the laws are those im
posed by nature and the technology. Executing a sequence of con
trolling actions is the counterpart of making a sequences of moves 
in a game. In both cases we choose a path through the tree of 

possibilities. 
When both the numbers and the program have been stored in 

the computer, we simply start the computer executing its instruc
lions. Think of a video game or a flight simulator. The in
structions, on the stored numbers defining the model's 
state, determine what happens instant by instant. Wllat we see on 
the screen is a back-translation of the numbers to gauge 
displays, and so on, that capture the look and feel of the 
machine. Controlling actions amount to input 10 the program 
at various stages of the calculation. The input is supplied 
typing, or by the video game's joystick, or by realistic controls in a 
full-Hedged flight simulator. The result is a dynamic, computer
based model-a major vehicle for the scientific investigation of 

emergence. 

f 
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Checkers 

"NY SERIOUS STUDY must confront learning. Despite 
the perpetual novelty of the world, we contrive to turn experience 
into models of that world. We learn how to behave, and we antici
pate the future, tL~ing the models to guide us in activities both 
common and uncommon. Somehow, through learning, these 
models emerge from the torrent of sensations that impinge upon 
us at every moment. Certainly, a deeper understanding oflearning 
will contribute to a deeper understanding of emergence. In at
tempting to understand the relation between learning and model 
building, we could scarcely find a better starting point than Art 
Samuel's mechanization of learning in the checkersplaying 
program. 

It is strange that, until recently, Machine Learning has been a 
sideshow in Artificial Intelligence (AJ)-strange, becaw,e most 
would say that an organism that does not learn is not intelli
gent. Nevertheless, for most of its history, AI has placed work 
on learning at the periphery of it~ activities. Samuel's 1959 work 
on checkersplaying, and the work on cyclic neural nets 
et aI., 1956), both completed almost a half-century ago, still lie 
close to the cutting edge of research in Machine Learning. Be
cause the two efforts took place near the dawn of the computer 
age, they have a stark construction, unencumbered by elaborate 
concern with computer languages, interfaces, and the like. For 
this reason, they make a meaningful starting point for a close look 
at the computer-based models that underpin Machine Learning. 
We will delve into Samuel's checkersplayer in this chapter, and will 
devote the next chapter to cyclic neural nets. Although these two 
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